How it Works


An electromyograph (EMG) uses surface electrodes to detect muscle action potentials from underlying skeletal muscles that initiate muscle contraction. Clinicians record the surface electromyogram (SEMG) using one or more active electrodes that are placed over a target muscle and a reference electrode that is placed within six inches of either active. The SEMG is measured in microvolts (millionths of a volt).

Biofeedback therapists use EMG biofeedback when treating anxiety and worry, chronic pain, computer-related disorder, essential hypertension, headache (migraine, mixed headache, and tension-type headache), low back pain, physical rehabilitation (cerebral palsy, incomplete spinal cord lesions, and stroke), temporomandibular joint disorder (TMD), torticollis, and fecal incontinence, urinary incontinence, and pelvic pain.

Feedback thermometer

A feedback thermometer detects skin temperature with a thermistor (a temperature-sensitive resistor) that is usually attached to a finger or toe and measured in degrees Celsius or Fahrenheit. Skin temperature mainly reflects arteriole diameter. Hand-warming and hand-cooling are produced by separate mechanisms, and their regulation involves different skills. Hand-warming involves arteriole vasodilation produced by a beta-2 adrenegeric hormonal mechanism. Hand-cooling involves arteriole vasoconstriction produced by the increased firing of sympathetic C-fibers.
Biofeedback therapists use temperature biofeedback when treating chronic pain, edema, headache (migraine and tension-type headache), essential hypertension, Raynaud’s disease, anxiety, and stress.


An electrodermograph (EDG) measures skin electrical activity directly (skin conductance and skin potential) and indirectly (skin resistance) using electrodes placed over the digits or hand and wrist. Orienting responses to unexpected stimuli, arousal and worry, and cognitive activity can increase eccrine sweat gland activity, increasing the conductivity of the skin for electrical current.

In skin conductance, an electrodermograph imposes an imperceptible current across the skin and measures how easily it travels through the skin. When anxiety raises the level of sweat in a sweat duct, conductance increases. Skin conductance is measured in microsiemens (millionths of a siemens). In skin potential, a therapist places an active electrode over an active site (e.g., the palmar surface of the hand) and a reference electrode over a relatively inactive site (e.g., forearm). Skin potential is the voltage that develops between eccrine sweat glands and internal tissues and is measured in millivolts (thousandths of a volt). In skin resistance, also called galvanic skin response (GSR), an electrodermograph imposes a current across the skin and measures the amount of opposition it encounters. Skin resistance is measured in kΩ (thousands of ohms).

Biofeedback therapists use electrodermal biofeedback when treating anxiety disorders, hyperhidrosis (excessive sweating), and stress.

Electrodermal biofeedback is used as an adjunct to psychotherapy to increase client awareness of their emotions. In addition, electrodermal measures have long served as one of the central tools in polygraphy (lie detection) because they reflect changes in anxiety or emotional activation.


An electroencephalograph (EEG) measures the electrical activation of the brain from scalp sites located over the human cortex. The EEG shows the amplitude of electrical activity at each cortical site, the amplitude and relative power of various wave forms at each site, and the degree to which each cortical site fires in conjunction with other cortical sites (coherence and symmetry).

Neurotherapists use EEG biofeedback when treating addiction, attention deficit hyperactivity disorder (ADHD), learning disability, anxiety disorders (including worry, obsessive-compulsive disorder and posttraumatic stress disorder), depression, migraine, and generalized seizures.


A photoplethysmograph (PPG) measures the relative blood flow through a digit using a photoplethysmographic (PPG) sensor attached by a Velcro band to the fingers or to the temple to monitor the temporal artery. An infrared light source is transmitted through or reflected off the tissue, detected by a phototransistor, and quantified in arbitrary units. Less light is absorbed when blood flow is greater, increasing the intensity of light reaching the sensor.

A photoplethysmograph can measure blood volume pulse (BVP), which is the phasic change in blood volume with each heartbeat, heart rate, and heart rate variability (HRV), which consists of beat-to-beat differences in intervals between successive heartbeats.

A photoplethysmograph can provide useful feedback when temperature feedback shows minimal change. This is because the PPG sensor is more sensitive than a thermistor to minute blood flow changes.[28] Biofeedback therapists can use a photoplethysmograph to supplement temperature biofeedback when treating chronic pain, edema, headache (migraine and tension-type headache), essential hypertension, Raynaud’s disease, anxiety, and stress.


The electrocardiograph (ECG) uses electrodes placed on the torso, wrists, or legs, to measure the electrical activity of the heart and measures the interbeat interval (distances between successive R-wave peaks in the QRS complex). The interbeat interval, divided into 60 seconds, determines the heart rate at that moment. The statistical variability of that interbeat interval is what we call heart rate variability. The ECG method is more accurate than the PPG method in measuring heart rate variability.

Biofeedback therapists use HRV biofeedback when treating asthma, COPD, depression, fibromyalgia, heart disease, and unexplained abdominal pain.


A pneumograph or respiratory strain gauge uses a flexible sensor band that is placed around the chest, abdomen, or both. The strain gauge method can provide feedback about the relative expansion/contraction of the chest and abdomen, and can measure respiration rate (the number of breaths per minute).[20] Clinicians can use a pneumograph to detect and correct dysfunctional breathing patterns and behaviors.

Dysfunctional breathing patterns include clavicular breathing (breathing that primarily relies on the external intercostals and the accessory muscles of respiration to inflate the lungs), reverse breathing (breathing where the abdomen expands during exhalation and contracts during inhalation), and thoracic breathing (shallow breathing that primarily relies on the external intercostals to inflate the lungs). Dysfunctional breathing behaviors include apnea (suspension of breathing), gasping, sighing, and wheezing.

A pneumograph is often used in conjunction with an electrocardiograph (ECG) or photoplethysmograph (PPG) in heart rate variability (HRV) training.

Biofeedback therapists use pneumograph biofeedback with patients diagnosed with anxiety disorders, asthma, chronic pulmonary obstructive disorder (COPD), essential hypertension, panic attacks, and stress.


A capnometer or capnograph uses an infrared detector to measure end-tidal CO2 (the partial pressure of carbon dioxide in expired air at the end of expiration) exhaled through the nostril into a latex tube. The average value of end-tidal CO2 for a resting adult is 5% (36 Torr or 4.8 kPa). A capnometer is a sensitive index of the quality of patient breathing. Shallow, rapid, and effortful breathing lowers CO2, while deep, slow, effortless breathing increases it. Biofeedback therapists use capnometric biofeedback to supplement respiratory strain gauge biofeedback with patients diagnosed with anxiety disorders, asthma, chronic pulmonary obstructive disorder (COPD), essential hypertension, panic attacks, and stress.


Hemoencephalography or HEG biofeedback is a functional infrared imaging technique. As its name describes, it measures the differences in the color of light reflected back through the scalp based on the relative amount of oxygenated and unoxygenated blood in the brain. Research continues to determine its reliability, validity, and clinical applicability. HEG is used to treat ADHD and migraine, and for research.